Front propagation in hyperbolic fractional reaction-diffusion equations
نویسندگان
چکیده
منابع مشابه
Front propagation in hyperbolic fractional reaction-diffusion equations.
From the continuous-time random walk scheme and assuming a Lévy waiting time distribution typical of subdiffusive transport processes, we study a hyperbolic reaction-diffusion equation involving time fractional derivatives. The linear speed selection of wave fronts in this equation is analyzed. When the reaction-diffusion dimensionless number and the fractional index satisfy a certain condition...
متن کاملSpeed of wave-front solutions to hyperbolic reaction-diffusion equations.
The asymptotic speed problem of front solutions to hyperbolic reaction-diffusion (HRD) equations is studied in detail. We perform linear and variational analyses to obtain bounds for the speed. In contrast to what has been done in previous work, here we derive upper bounds in addition to lower ones in such a way that we can obtain improved bounds. For some functions it is possible to determine ...
متن کامل2 00 6 Fractional Reaction - Diffusion Equations
In a series of papers, Saxena, Mathai, and Haubold (2002, 2004a, 2004b) derived solutions of a number of fractional kinetic equations in terms of generalized Mittag-Leffler functions which provide the extension of the work of Haubold and Mathai (1995, 2000). The subject of the present paper is to investigate the solution of a fractional reaction-diffusion equation. The results derived are of ge...
متن کاملNumerical solutions for fractional reaction-diffusion equations
Fractional diffusion equations are useful for applications where a cloud of particles spreads faster than the classical equation predicts. In a fractional diffusion equation, the second derivative in the spatial variable is replaced by a fractional derivative of order less than two. The resulting solutions spread faster than the classical solutions and may exhibit asymmetry, depending on the fr...
متن کاملA geometric approach to bistable front propagation in scalar reaction–diffusion equations with cut-off
‘Cut-offs’ were introduced tomodel front propagation in reaction–diffusion systems inwhich the reaction is effectively deactivated at points where the concentration lies below some threshold. In this article, we investigate the effects of a cut-off on fronts propagating into metastable states in a class of bistable scalar equations. We apply the method of geometric desingularization from dynami...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review E
سال: 2005
ISSN: 1539-3755,1550-2376
DOI: 10.1103/physreve.71.057105